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A numerical method is developed for solving the optical Bloch equations in the
center-of-mass momentum space for a clogexystem in a counterpropagating field
configuration. The method consists of an iterative procedure based on the matrix
continued fraction and a transformation by which the optical Bloch equations can be
organized into the tridiagonal matrix recurrence forme 2001 Academic Press
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A variety of laser cooling and trapping techniques have been developed during the |
two decades in an effort to push the atomic temperature to its theoreticalTligiO;
see for example, [1]. These advances eventually led to the recent spectacular disple
Bose—Einstein condensation of alkali atoms [2—4]. In this paper, we present a numer
method for studying the cooling features of a clodédystem in a counterpropagating
field configuration as shown in Fig. 1. Here, the 1-3 transition is dipole-forbidden whi
the 1-2 and 3-2 transitions are characterized by the same spontaneous defayrrate
addition, the latter two transitions are driven, independently, by laser fields of the sa
frequencyw, wave numbek, and Rabi frequenc¥. This model can be realized, in real
atoms, by driving al = 0 (ground level) toJ = 1 (excited level) atomic transition with
counterpropagating laser fields @f ando_ polarizations. An in-depth analysis of the
cooling force was given by Dalibard, Reynaud, and Cohen-Tannoud;ji [5] and later by (
and Bigelow [6] in a semiclassical approach in which the motion of the atoms is descrik
by means of the Fokker—Planck equations. The Doppler effect is identified as the underl
physical mechanism leading to cooling in this model. As a result, the average kinetic ene
K is limited to the energy width of the excited levels, that is,
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whereM is the atomic mass andp is the momentum width. Leb, = hk?/2M be the
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FIG. 1. A graphical representation of three-lewéitype atoms interacting with two counterpropagating
laser fields.

photon recoil frequency shift. For atoms of narrow lifies w; and the momentum width
can be narrower thahk according to Eq. (1). In such a circumstance, the de Brogli
matter wavelength of the atoms exceeds the optical wavelength of the laser fields.
longer can atoms be considered particles moving classically under the influence of
electromagnetic fields. Hence, the results obtained from the semiclassical approach me
longer hold.

This consideration led Castin, Wallis, and Dalibard [7] (also Wallis and Ertmer [8])
a quantum mechanical treatment in which both the internal and external degrees of
atomic freedom are treated quantum mechanically. Yhgystem, compared to others,
forbids a photon of one direction to be transferred, via the stimulated process, to a phe
of the opposite direction, a phenomenon known as the coherent photon redistribut
As a result, atoms initially residing &, p) can only recycle among the three members
(12, p), |11, p—hk), |3, p+ hk)), of a momentum family£(p) as far as the stimulated
process is concerned. The coupling among the members of different momentum fam
is accomplished through the momentum redistribution by the spontaneous emission.
to the randomness in the spontaneous emission, an excited atom of momgrtum
with |g| < hk has theN(q) probability of becoming a ground atom of momentym

where
2
q
ey ]

assuming the emitted photons are circularly polarized. Following the notion of the mom
tum family [10, 11] along with the momentum redistribution by the spontaneous emissi
Castin, Wallis, and Dalibard [7] constructed, for each momentum fafily) , nine equa-
tions corresponding to each density-matrix elemenf {p). These equations are known
as the generalized optical Bloch (GOB) equations that are both differential (with resp
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to time) and integral (over the center-of-mass momentum). Recently, we have develop
matrix continued fraction method to solve the GOB equations for the purpose of study
the effect of atomic recoil on the absorption spectrum of driVetype atoms [9]. In that
work, theV-system is open and the focus of the work is on the spectrum calculation. In tl
paper, we extend this method to the closedystem and focus our attention on the atomic
momentum distribution which determines the temperature of the atoms.

To obtain the steady state solution, we set all the time derivatives in the GOB equation
zero. Thisleads to nine coupled integral equations. A straightforward method in dealing v
the coupled equations is to first reduce the coupled equations to one equation involving
unknown by forward substitution, and then to obtain all the unknowns by backward substi
tion, starting from the solution to the equation for one unknownpbgtp) = (p, 2|p|2, p),
p11(p) = (p — Nk, 1|p|1, p — k), andpsa(p) = (p + Nk, 3|p|3, p + hk), wherep is the
density-matrix operator angplis the eigenvalue of the center-of-mass momentum operatc
Our derivation (not shown for simplicity) leads to an integral equationofetp) in the
form of

+hk

A(P)p22(P) = F/ ) dgN(@)ca2(p — Ak + ) p22(p — Ak + q)

+hk
+F/ﬁ dgN(g)ci2(p +hk+ q)p22(p +hk + @), 2
—hk
where

A(p) = I'cia(p) + I'czz(p),

andcio(p) andcsa(p) are coefficients defined through the relations between the excited a
ground populations

p11(P) = C12(P)p22(P)  and paz(P) = Cz2(P)p22(P). €))

The explicit expressions for thesg(p) functions are too complex to present here. For the
purpose of this paper, it seems sufficient to know that they are determined by various sin
and two-photon absorption rates, which are themselves functions of various decay re
the Rabi frequency, and laser detunings. Physically, Eq. (2) is a result of detailed bala
among the populations in momentum space. In addition to Ego42)p) is constrained by

the closure condition, which, with the help of Egs. (3), leads to the normalization conditi

for p22(p),

+00
/ [1+4 cr2(p) + C32(P)] p22(p) dp = 1. (4)

]

Evidently, the key to the total atomic momentum distribution is to develop efficient alg
rithms for solving Eq. (2) subject to the normalization condition (4). In what follows, wi
show that Eq. (2) can be cast into a tridiagonal matrix recurrence equation, and solve i
the method of matrix continued fraction [12, 13]. To begin with, we digjdetween-hk

and-+hkinto L divisions and replace the integrals in Eq. (2) with Simpson’s rule [14]. Thi
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process turns Eg. (2) into

A 0
_ F?p > bt NAK+ p)Caa(Pr1) p22(Prst) + A(Pn) p22( Pr)

Ap &
- ?p E b N(—hK+ p)ci2(pnti) p22(Pasi) = 0, %)
=0

wherep, = nAp andb = 4 or 2 depending on whethkis odd or even with the exception
of by = b = 1. Note that in arriving at the form for the first sum in Eq. (5), we have mad
the transformatioh — L — | along with the conditiorl. Ap = 2hk. Equation (5) can be
further organized into

L
> Avoza(Pnat) =0, (6)
I=—L

where
A A
A0 = A(pn) — r?p N (—RK)Cra(pn) — r?p N (AK)Caa( Pr).
| Ap )
A, = —F?bl N(=hk+ p)cia(pn) if1 >0,
| Ap .
A, = —F?bm N(hk+ p)cia(pny) if1 <O.

Next, we follow a standard procedure [14] and transform Eq. (6) into a tridiagonal mat
recurrence equation

Q;an—l + Qnan + Qxan-t,-l = 0, (7)
wherec, is a vector of dimensioh defined as

022(PLn)
& 022(PLn+1)

n — )

p22(PLn+L-1)

while Qn’s are matrices of. x L defined as
Qi = AL Qi = At @Quij = Al

where Al = 0if ||| > L. Let the entire momentum space, ranging frem, t0 Pmax be
divided into(max— min) number of &k blocks, where max min = (pmax — Pmin)/20k.
(In this paper,pmin = — Pmax Since our model is symmetric.) As long @gin and Pmax
remain far away from the center, the elements in b@th,1 andcyin_1 remain fairly
constant. For technical reasons, we first assume this constant to be 1 and set all the elel
iN Cmax+1 andtmin 1 to 1. (This constant will later be fixed by the normalization condition.]
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To solve Eq. (7) under this assumption, we first require that the solution to Eq. (7) follov
backward ansatz

6n—l = _Sn—lQ:_lén - én—ly (8)

whereS, is a matrix of dimensioi. x L, anda, is a vector of dimensioh. S, anda, are
found, after Eq. (8) is inserted into Eq. (7), to obey

Si=(Qn—QrS-1Q D
B} . ©)
an = _SnQn an-1,
for n > min, and to be equal to
S‘nin = (Qmin)il,
(10)

amin = S‘ninQ%inemin -1

for n = min. The numerical procedures are summarized as follows. First, obtain & the
anda, from Eq. (9) by forward iteration starting from Eq. (10). Second, solve for all th
¢» from Eq. (8) by backward iteration starting frofpax.1. Finally, divide the solution by
the normalization factorf_*:oo [14 c12(p) + C32(p)] p22(p) dp, to obtain the true excited
momentum distributiomo(p).

Items of interest in our study include the total momentum distribution

Protal(P) = p11(P + hK) + p22(p) + p33(p — hK), (11)

and the average kinetic energy

_ +o0 p2
K= /_oo mptotal(p)dp» (12)
which is a direct measure of the atomic temperature. In the simulation bbkdg/chosen

to be the unit for the momentuni, to be the unit for any rates and frequencies, and th
momentum is sampled at a rate of about 10 divisiondpeFigure 2 displays a sequence
of atomic momentum distributions that distinguish themselves by their Rabi frequenci
It is produced for atoms with relatively narrow atomic transition lineeaf=E; /h) =T
subject to lasers of red detuning®& —2.5T". It clearly shows that for atoms of narrow
line, the atomic distribution can be nonMaxwellian if the lasers are sufficiently wea
Figure 3 shows how the average kinetic enel@ychanges with the laser detuniggor
different Rabi frequenciek. It indicates that for a giver, the average kinetic energy
reaches a minimurK_mm at a certain laser detuning,. It deserves mention that curve
(a) of Fig. 3 is produced under the limit of narrow atomic liag {I" = 10> 1) and low
laser intensity . /T" = 0.1 « 1). From curve (a), we find tha min ~ 0.51Fw, and
Smin =~ —43.10I' = —4.31w;. These values are in close agreement with analytical resul
K_mm ~ 0.53hkandspmin ~ —4.50, underthe same limit[7]. In addition, we find (not shown)
that ass increases beyonti, (that is,s is on the right side o), first the average kinetic
energy [Eq. (12)] fails to converge, and then the steady state atomic momentum distribu
[Eq. (11)] ceases to exist. Numericall [Eq. (12)] is recognized as being divergent if
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FIG. 2. A sequence of total atomic momentum distributigng. (p) consisting of () = 0.05I", (b) E =
0.5T", (c) E = 1.0T", and (d)E = 2.5I". Other parameters atg = I' and§ = —2.5T".

it always increases with the increase in the momentum space (meaningd pafgeand
Pmax)- Similarly, a solution is considered unphysical if the momentum distribution [Eq. (11
always broadens with the momentum space. All these results match those found by Ce
Wallis, and Dalibard [7].

In this paper, we have applied the method of matrix continued fraction to solve ste
state GOB equations obtained by a full guantum mechanical approach. It is worthwi
to compare this method with other numerical approaches. One way to obtain the ste
state momentum distribution is to propagate the GOB equations along time, either
direct integration or by Monte—Carlo simulation, until the solution does not change w
time. However, this method is time consuming. Another method is to treat the steady s
GOB equations as linearly coupled equations consistingNaf:{ — Nmin)L number of
unknowns per atomic variable in momentum space. But, since the dimension of the me
to be inverted can be very large, this method requires a long time and much memory sp
In comparison, the matrix inverse operations in our method are all performed on matri
of L x L dimension, wheré is typically much smaller than the total number of divisions
in the momentum space. That is why our method is efficient in terms of both computi
time and memory storage. This work, to our knowledge, represents the first applical
of the method of matrix continued fraction in laser cooling problems where the cent
of-mass motion is quantized. We expect that this method will find its use in many ott
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FIG. 3. The dependence of the average kinetic energy on the laser detuning Eoe(&) 11", (b) E = 10T,
and (c)E = 20r. Other parameters arg; = 100" ands = —38[". The average kinetic energy is called to the
photon recoil kinetic energy; = ho; .

problems, especially in problems where subrecoil cooling features can emerge from a b
background in momentum space [15, 16].
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